DURABILITY OF ADHESIVELY BONDED STRUCTURES

Rod Martin

Materials Engineering Research Laboratory, Ltd. Hertford, SG13 7DG UK

> ADHESIVE BONDING CAA, Aviation House, UK October 26-27th 2004

ANALYSIS OF BONDED STRUCTURES

OUTLINE OF PRESENTATION

- Durability Definition for Bonded Structures
- Current Evaluation Test Methods
- The use of Fracture Mechanics for Debond Prediction
- The use of Fracture Mechanics for Environmental Effects
- Incorporating Rapid Inspection Techniques
- High Cycle Fatigue

DURABILITY - A COMBINATION OF STRESS AND ENVIRONMENTAL DEGRADATION

Modes of failure:

- Cohesive in adhesive
- Weak layer at interface
- Interfacial
- Delamination in composite
- Substrate failure

Environmental degradation:

- Reduction in cohesive strength
- Reduction in interfacial strength
- Substrate corrosion
- Substrate failure

CURRENT STANDARD TEST METHODS

REQUIREMENT FOR A NEW APPROACH

Current methods

- Results are relative and test piece dependent
- Environmental assessments do not account for cyclic fatigue loads
- At best give relative ranking At worst are misleading
- Cannot use for detailed design purposes

Fracture Mechanics offer advantages

- Use as basis to not only rank systems but also for design analysis
- Use to accelerate environmental durability testing under fatigue loads
- Crack growth a function of strain energy release rate (G)
- da/dN vs G is assumed to be property of the system (adhesive/substrate/surface preparation)

FRACTURE LIFE ASSESSMENT METHODOLOGY

UTILISING ANALYSIS FOR DESIGN PURPOSES

STRINGER DEBOND IN COMPRESSION PANEL

FM TECHNIQUE WELL VALIDATED

Hybrid materials

CHANGE OF FAILURE MODE IN ENVIRONMENT

EUROPEAN BONDED JOINT AUTOMOBILE PROJECTS

Long Term Durability of Bonded Automotive Metallic Structures

A European Commission, 5th Framework Consortium Project January 1st 2002 -December 31st 2004 1.8MEuro CEN Standard to be published in 2005

SuperLightCar

Mid 2005 - Mid 2009 20MEuro A European Commission, 6th Framework Integrated Project 39 European partners Objective: to develop lightweight technologies through vehicle for future low emission automobiles MERL to evaluate durability of multi-material bonded and welded joints

REINFORCED DCB TEST PIECE TO MAINTAIN "ADHESIVE SYSTEM" INTEGRITY

Thin gauge or multi-material substrates to maintain mode I loading AND factory surface preparation conditions

COMMERCIAL TEST EQUIPMENT

ADHESIVE BOND DURABILITY TESTING

STRUCTURAL LIFE PREDICTION Extruded Aluminium Profiles in Space Frame

LIFE PREDICTION FOR BONDED 'H' STRUCTURE

NDT SOLUTIONS RAPIDSCAN ULTRASONICS

INTEGRATING RAPID NDT WITH EFFECTS OF DEFECTS ANALYSIS

RapidScan inspections give detailed 3D damage maps (Delaminations and debonds) that can directly be evaluated using the Fracture Mechanics approach

HIGH CYCLE FATIGUE/NO GROWTH THRESHOLDS

MERL

EXTRAPOLATING TO HCF

G.B. Murri et al "Fatigue Life Prediction of Tapered Composite Laminates" 53rd AHS Meeting, May 1997

THANK YOU

